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An algorithm for the generation of a phase cycle of minimum The phases ¢, ¢r} _, must be chosen so that
length for a pulse sequence is developed from the basic require-
ment that only specified coherence transfer pathways will be L _ '
accumulated. The efficacy of the algorithm is shown by determin- S, - { LC,  if misaselected pathway, 2]
ing the phase cycles of minimum length for DQFCOSY, GHMBC, = ml 0 otherwise,
and INEPT pulse sequences. © 2000 Academic Press
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GHMBC. whereC,, is a complex constant (usually 1) which reflects the

phase of the signal acquired for selected pathwayBoden-
hauseret al. (1) showed that if the phas#,, of the nth pulse
is cycled independently of other pulses through values

INTRODUCTION

27(l — 1)
. . bu="p [3]
The creation of a new pulse sequence to obtain informa- n
tion about one particular process and/or one type of molec-
ular fragment always involves the invention of a progra®r | = 1, ..., L, with corresponding receiver phases
for the cycling of the phases of the pulses and receiver (a
phase cycle) in order to achieve the desired selectivity. In dr = —Kony, [4]

their ground-breaking paper on coherence transfer pathways

and phase-cycling, Bodenhausen al. (1) described the only pathways for which the coherence level changes caus
evolution of the spin system during the pulse sequence frdw thenth pulse are

the initial longitudinal magnetization of one of the nuclei

present until transverse magnetization is detected as travel Apnn= K = kL, [5]
along a coherence transfer pathway. If coherences which
follow a particular coherence transfer pathwayxperience wherek = 0, 1, ..., are selected. These ideas imply that on

a changeAp,,, in coherence level when thigh pulse in the can construct a phase cycle which selectively acquires sign:
pulse sequence is applied, their signals acquire a phagisich have traversed a particular coherence transfer pathw
factor expiAp..d.), Whereg,, is the phase of the pulsedefined by the coherence level chandgs, Ap,, ..., Apy

in thelth step in the phase cycle. For a pulse sequence whiay superimposing independent cycles of each of the puls
hasN pulses,M possible pathways, and a phase cycle ofith suitable receiver phase. However, in many pulse st
length L, the phase factorsi,,, for signals from themth quences, the phases of some pulses are held fixed through
pathway in theth step in the cycle, including the receivei@nd/or the phases of other pulses are cycled in concert. Clea

phase factor expfidr), is the creation of an effective phase cycle still remains a raths
intuitive endeavor and the length of a phase cycle rathe
empirical.
N A properly constructed phase cycle must effectively sur
A= expl—i S AP — i bry). [1] press signals which arise from coherences which follow und

sired pathways, while accumulating signals from the selecte
pathway(s). Pulse imperfections open up large numbers
coherence transfer pathways which are not accessible w

' Supported by the Natural Sciences and Engineering Research CounciP§iffect pulses, and signals arising from al! such pathways mL
Canada. be suppressed by the phase cycle. The first pulse in any pu
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sequence is expected to convert longitudinal magnetizatimhered,, is the phase of thath pulse in the sequenceéy, is
(coherence level 0) into transverse magnetization (coherenice phase of the receiver, artp,,, is the coherence level
levels +1). If this pulse is a perfect 90° pulse, all of thechange caused by theh pulse to signals traversing timath
zero-level coherence is converted into coherences intthe pathway. For a “selected” pathway, the phase of the sign
levels; but if the pulse is an imperfect 90° pulse (or intentiomust be the same for each of thesteps in the phase cycle so
ally has a flip angle different from 90°), some zero coherentleat the signals add constructively. For any “blocked” pathway
remains after the pulse. Any 90° pulse applied later in thbe phases of the acquired signals must vary during the phe
sequence, whether perfect or imperfect, can convert coherencgde in such a way that they interfere destructively and th
in any level into coherences in levelsn, —(n — 1), —(n — sum of the signals, over the complete phase cycle, is zero.
2), ...,n — 1, n, wheren is the number of spig-nuclei to this article, we will restrict our attention to phase cycles whicl
which the pulse is applied, i.e., all valuesiyb are possible for use modulo 4 arithmetic and define the modular phase va
90° pulses. When a perfect 180° pulse is applied to one typeatifiesF andf, which correspond t@ and ¢, by

nucleus in the spin system, the pulse converts coherences in

level p (for that nucleus) to coherences in levep, but when 2

the 180° pulse is imperfect, all values &fp are possible. Fol = < )cpm.,
Therefore, imperfections in the first 90° pulse and in all 180°

pulses provide a large number of pathways whereby spurious 2
signals can reach the detector. The phase cycle must block for = (17) bnis

these pathways as well as the undesired ones which are acces-
sible even with perfect pulses. fo_ <2>
Two recent articles?, 3) describe methods for determining =\ ) Pre
the coherence transfer pathways which are selected when a
partic_ular pu.lse program is_ execgted wit.h a given phase cyd® that the modulo 4 equivalent of Eq. [7] is
The first article 2) uses simulation to identify the selected
pathways. In the second articl®) (the coherence level changes
{ Apmo} oo, for the selected pathways are determined directly N
from the values of the phases in the phase cycle. It was shown Fri= 2 Apmafu + fry (Mod 4). [9]
(3) that theAp,,, must satisfy the set of congruences n=1

(8]

N The accumulated signal for thath pathway will therefore be
> APuitbat + i =6 (mod 2m), 1 = 1,2, ... L,  Proportionalto

n=1
[6] . i
> exp[ -5 le] =LCy, [10]
where 6, is the phase of the acquired signal from selected =1
pathwaym. The values of theAp,,, can be determined by

solving this set of congruenced)( In this article, we use the whereC,, will be zero if mis a blocked pathway, an@,, will
fundamental congruences [6] to derive a set of conditioB® nonzero ifnis a selected pathway. Note tH@t, in Egs. [2]
which the phases §., ¢r}i—, must satisfy forall possible and [10] is a complex constant belonging to the set.( i,
coherence transfer pathways defined by the coefficidpts, 0), while¢,,in Eq. [6] is a phase angle which, in principle, can
and use this as the basis for construction of an algorithm figve any value in the range (072 Most oftenC,, will be
determine the set of phases which constitutes a phase cycle@fial to 1 for selected pathways, but if signals from more the
minimum length. one path are selecte@,, may depend on the specific pathway.
Any phase program {f.} -1, fr} 2. Which satisfies thevi
THEORY conditions given in Eq. [10] is a suitable phase cycle for th
pulse sequence. It is useful to require that the phase cycle a
For a pulse sequence witk pulses,M pathways, and a satisfy the requirement that the accumulated signals be free
phase cycle of length, the phase of the signd},,, from the the detector offset voltage. This additional requirement is m¢
mth pathway in thdth step in the cycle will be if

(Dml = Z Apmnq[)nl + d)RI (mOd 277)1 [7] E ex% - %T fR|:| = O’ [11]
n=1 =1
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which is equivalent to including, as a blocked pathway, one gponds to one of the pathways which begins with longitudin:

which all of theAp’s are zero. magnetization in the 0 coherence level and ends with tran
In order to facilitate a concise mathematical description ekrse magnetization of the appropriate spin in the coher-

the problem, it is necessary to express Eq. [9] in matrix formance level. MatrixP may include all possible pathways (see

The phase$,, Fu, ..., Fu, Fuiu, WhereF,., = fg, are DQFCOSY and INEPT examples below) or only those patt
arranged into aM + 1 X L phase matrix, ways not blocked by a judicious selection of pulsed fielc
gradients (see GHMBC example). It could also be tailored t
F. F, -+ Fy contain only pathways which are accessed when a specifi
Fo Foo -+ Fyu number of pulses or fewer are imperfect.
F = : : . : 7 [12] The arrangement of rows (and columns) of the ari@ysP,
Fu Fu» - FuL and C is arbitrary. In the following analysis, the rows and
= = columns of these arrays are reordered in order to obtain trar
formed arrays which have simple canonical forms. These ri
so that Eq. [9] can be written as arranged matrices will be denoted with primes and will b
referred to as the canonical forms of the matrices.
F=P-f(mod 4, [13] We now seek to determine the minimum number of inde

pendent phases (referred to ke phases below) which must
be determined in order to obtain a satisfactory phase cycl
This process involves the determination of a linear transfol
mation which transforms the matrixinto a matrix,V’, whose

where the pathway matri®, is defined by

ig” iglz igl’“ i first K rows and columns form & X K unit matrix, where
b :21 :22 . :ZN : 4] K =N + 1, and the loweM + 1 — K rows are zero:
AF.)Ml AF.)MZ T AFjMN 1 ' ’ ’
0 0 0 1 0 -+ 0 Viksr Viksz " 1N+1
(_) 1 0 V,2_|<+1 V’2_K+2 ' V,2_N+1
and the pulse/receiver phase arrgyhy oL : : . :
V! = oo ---1 V|’<K+1 V;<K+2 V{<N+1
fll flz"'flL OO0 ---0 0 0 0 [
fn fo oo fa °0 .9 0 0 .- 0
f=1 - : . r [15] .. - . : . :
le sz fNL OO0 ---0 0 0 0
le fRZ ot fRL [17]

By choosingC,., = 0, we see that requirement [11] is_ . o _ ) ) ) _
equivalent to the requirement that the elements in e+ This transformation is determined using the algorithm given i
1)th row of F satisfy Eq. [10]. The order of the rows andl@ble 1 and is essentially the Gauss—Jordan elimination pr
columns inP is arbitrary, but it is expedient to arrange the row§€SS ®: 6 with row and column interchange. The requirec
so that the selected pathways form the Bsows ofP, and the !In€ar transformation is described by two matrices:Mmn+

lastM + 1 — Srows correspond to pathways which are to b& X M + 1 matrix Q which contains the required linear

blocked by the phase cycle. A collection vector,defined by Ccombinations and interchanges of the rowsPofvhich pro-
duces &K X K unit matrix in the upper right block 0¥’ and

makes all elementsinrows + 1, K + 2, ... ,M + 1 of V’

gl zero; and alN + 1 X N + 1 matrix T which defines the
:2 required column interchanges in the columngf P so that
¢ the matrixV’ defined by

c=1¢l [16]
0 V'=Q:-P-T (mod 4 [18]
0 is of the form given in Eq. [17]. The numbg&rof nonzero rows

in V' is related to the number of key phase variables whos
is constructed from the elements, and has dimension cycles must be determined as shown below.
M + 1. The application of a column ordering transformatigrto
It must be emphasized that each row in fhenatrix corre- matrix Q gives
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TABLE 1
Algorithm for Construction of Q’, Q, V', S, and T Matrices
and Determination of K

setv@ =P, Q=1
set q= 0.
forf*n=1,N+1-q
while (columnn + g of V¥ contains no element(},. with absolute
value 1 forr = n)®
increment g
end while
if (Vo] # 1)°
setR™ to permute rown with a rown’ for which V{2 = 1
else
setR™ = 1
setn =n
end if
set ViV = Vi x vt (modd)
forr=n+qn+qg+1,..., N+ 1
initialize Q™ = 1
n)— 7(R(n) * Vmil))n n+q X (R(n) * V(nil))r n+q(m0d 4)
setQm *{(R(n) RVILEDN neq(mod 4)
setvV®™ = Q(n) cRM . V("fl)(mod 4)
replaceQ by Q™ - R™ - Q(mod 4)
end for n
setS to permute columns o to block form in Eq. [20]
setQ’ =Q-S
sety = y®ta
setT to permute columns 0¥ to block form in Eq. [17]
setV' =V - T
setK=N+1-gq

forr #n
forr =n

OLLERENSHAW AND MCCLUNG

and the elements of the lower righti(+ 1 — K) X (M +
1 — K) portion of Q" form a unit matrix. The upper lef X
K portion of Q' is a matrix which is the inverse of the upper
left K X K portion of the matrixP’ defined by
P =S"P-T, [21]
whereS' is the transpose @. P’ is a pathway matrix in which
the rows and columns are ordered in a more optimum mann
than inP. Congruence [18] can be rewritten as
V'=Q’'-P’' (mod 4. [22]
It is convenient to define reordered or canonical forms of th
pathway array

F' =S'F, [23]
pulse/receiver phase array

fr="T"f1, [24]
and collection array

c’'=s'"C, [25]

%1n for loops, the upper bound is recalculated at the end of each iteratiokhere T is the transpose dF, so that Egs. [13] and [10] can
®|3] = 1 (mod 4). If all possible pathways are includedPinthis reduction be written as
algorithm which restricts pivot elements to those with magnitude 1 will give

the required reduction.

Q' =Q-5S

where theQ’ matrix is anM + 1 X M + 1 linear transfor-

mation matrix of the form

[19]

F' =P’ (mod 4 [26]

and

(27]

L .

I
> exp[—2 F’ml] =LC,
=1

! ! ! _ ! O 0 .
85 822 8;;1 gzi 00--- It should be noted that tH@matrix is constructed in such a way
: : . : : oo that any of the firsK rows of F’ for which the corresponding
o L oL oL 000 elements ofC’ are nonzero precede rows for which the corre
Q' = QKOll QKolz .. _QK lOK ! QKllK 00 --- sponding elements o’ are zero.
Qk+11 Qk+12 * + * Qksak-a 0 |10 - From Egs. [22] and [26],
Qk+21 Ql’<+22 t 'Q;HzK—l 0 01-
: ) ; : S V'-f' =W (mod 4), [28]
Q;\/H—ll Q;\/I+12 t 'Q;\/I+1K—1 0 00 - . .
where the phase arra¥ is defined by
[20]
¥=Q'-F' (mod4. [29]

All elements in the upper rig X (M + 1 — K) portion of

Q’ are zero. The elements of the lower lefl (+ 1 — K) X If the elements oflr were known, one could determine the
K portion of Q" will be shown below to define importantelements of the pulse and receiver phase dfrhy solving Eq.
relationships from which the phase cycle can be determing@8]. Examination of the form of matri¥/’ (Eqg. [17]) shows
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that only the firsK rows are nonzero and that the determinan- L . K-1

tal rank of matrixV’ is K. This implies that there afd + 1 — > expl — ' > X, Fu|l=LC, [35]
K degrees of freedom in the determination of Mhe- 1 rows -1 2 p=1 fr

of f': only K of these rows are linearly independent, and the

remainingN + 1 — K rows may be assigned arbitrarily)( It
is convenient to choose the lowdr+ 1 — K rows off’ as the
arbitrary rows and set them to zero so that

where the M + 1) X K matrix X has elements

X — 8(1;1, fOI’OSaSK,
w=1-Q,,(mod4 forK+1l=a=M+1. (36]

) _{\If,-, forl=j =K, [30]

—10 forK+1=j=N+1.
The determination of the phase cycle for the pulse sequence
Since the lowerN + 1 — K rows of V' are zero, the therefore reduced to the determination of the elements of tl

corresponding rows o# are also zero. Equation [30] implieskey phases which satisfy Eq. [35]. _

that the determination of the firkt rows of W is equivalentto ~ The determination of the elements of the key phdsgss

the determination of the linearly independent rows'of not a trivial task. From the outset, the task seems impossibl
TheKth row of f' (and W) contains the receiver phases fohe lengthL of the phase cycle is not known since we seek .

each step of the phase cycle. The values must be chose®hi@se cycle of minimum length; and it would appear that on
satisfy Eq. [11], and they can be chosen to be must solve a myriad of transcendental Egs. [35] in an unknow

number of variables’,,. However, an iterative process to

=W, =(02130213...0218 [31] determinelL andF;fl has been .devised and i.s presented belov

In order to begin the solution process, it should be recoc

independent of the values of all other phases. nized thatF’, is constant for all because the first row of the

In order to determine the phas¥s,, we recognize that’ , pathway matrix?’ and the collection vectaZ’ corres.pond.s to
is identically zero fore > K (see Egs. [17] and [28]) and thatO"€ of the collected pathways. Therefore. one begins W'fh
the ath row of Q’, for « > K, contains nonzero elements onl gnd chposes the V?'“e Bt (?on5|§tent with the value (ﬁl_' .
in columnsy = 1, 2, ... K — 1 andp. = « (Eq. [20]). From It is easiest to d'esc.nbe the |terat|\(e k'ey phgse determinati
the definition of®, Eq. [29], process by considering the determination of jtterow of the

phase matri¥’. One assumes that phad€s, Fy, ..., F_y
are known for 0= | = L, whereL is the length of the phase

K-1 . . . . .

, , . cycle which has been obtained in the determination of th
21 Qi Fur + Fa =0 (mod 4 [32] elements=_,.. (The process begins with= 2, givenL = 1
=

andF, consistent withC17.) To determine the phasés,, one
selects from Eg. [35] those relations which involve only the
known key phases 1, 2, .. j,— 1 and phasg, i.e., those for
which X,; # 0 andX,, = 0 forj < u = K. If there aren,

forK + 1= a =M + 1. Hence,

ap

K1 rows of matrixX in which thejth element equals 1 or 3 and in
w=— 2 Q. Fj (mod 4, [33] which the ( + 1)th and higher elements are zero, Eq. [35
p=1 yields a set oh, simultaneous equations

and, from Eq. [27], AD.BO =3O [37]

—Lc [34] in the unknown variableB(®, whereB® is a vector of dimen
“ sion L with elements

L |7T K-1
S e 5 S QuFl
I=1 pn=1

The phase&, FY, ..., Fk_, are henceforth referred to as e i 1
key phases since all phasés,, for « > K, are just linear BiY =|ex T2 Fi ' [38]
combinations of these key phases (see Eq. [33]).
Equation [34] defines the fundamental relationships whiclg(l) is a matrix of dimensiom, X L with elements
theK — 1 key phases must satisfy. It is important to recognize
that the indexa in Eq. [34] takes on valueK + 1, K +
2, ...,M + 1, and that the additional requirements which the 17t
key phases must satisfy are given in Eq. [27]. These two sets Al = exp[ 5 > Xar F(«], [39]
of requirements can be included in a single equation, k=1
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andG® is a vector of dimension, with elements for all |. If these conditions are met, then the values of the pha:
variablesF] are determined from the valuesgff’ using Eq. [38],
GP =LC,. [40] and no expansion of the length of the phase cycle is required.

The most interesting and enigmatic part of the determinatic
~The rows ofX in which X,; = 3 are included in Eq. [37] of the phase variables comes about when the elemeri§’of
since the relation obtained by solving Eq. [37] and/or the elementsB& ob-
tained by solving Eq. [43] do not have values which belong t

L S i 3 the required sets, but instead
2 exp — 5 2 XacFuljexg -5 Fj|( =LC,
I=1

k=1 BY=0 for0=1=L, [48]

[41]
and, possibly,
implies the complex conjugate relation

B#=0 for0=I=L. [49]

. 1
- i ¢ i .
2 expg + > 2 X Fla|{exp - ) Fi =LC% Clearly a value of zero foB™ or B is inconsistent with their
=1 k=t definitions (Eqgs. [38] and [44]). These zero values can only k
[42] rationalized by expanding the length of the phase cycleL.to 4
(In some cases an expansion to thay be sufficient, so this
because expfin/2 Fj] can have only values:1, *i. case is included in the algorithm presented below.) In the pha
In cases where there ang rows of matrixX in which thejth  cycle expansion, each element in a “known” révof the F’
element is 2 and in which thg (+ 1)th and higher elementsarray, with 1= k = j — 1, is replaced by a block of four
are zero, Eq. [35] yields a set af simultaneous equations replicas of that element so that

A®-B®=G® [43] (Fla Fie - - - Fi)
. . , . . v !
in the unknown variableB®, whereB® is a vector of dimen  (F/, Fl, Fl, Fiy Flo Flo Flo Fly . . . FlL FlL Fil Fl)

sionL with elements
[50]

i 2
Bi? = {exp[ 5 F,ﬁ” : [44] and thejth phase variable is taken to be a simple repetition
the four element$,, h,, h;, andh,:

A®@ is a matrix of dimensiom, X L with elements ,
Fii=(hyhyhshyhy hy hghy. .. hyhyhghy), [51]

o= X this expanded phase cycle, sets of simultaneous Egs. [37] 8
[43] are still obtained from the relations in Eq. [35] for which
X, # 0 andX,, = 0 forj < u = K, the vector8® andB®
are still of dimensiori, andA® andA® still have dimensions
n, X L andn, X L with values defined by Eqgs. [39] and [45];
but the elements o&® andG® are four times larger than in

_ , E(gs. [40] and [46], and the elementsBfP andB® are given by
Equations [37] and [43] are usually underdetermined sets o

simultaneous equations in the variabB$ andB®.

The development of Egs. [37] and [43] assumes that the phase @ _ : i
cycle has length. and that all of the elements Bf* obtained by BIV = X exp - 2 h.
solving Eq. [37] will have values in the set {, =i), that all of the
elements oB@ obtained by solving Eq. [43] will have valuesl, and
and, if a set of simultaneous Egs. [43] was present in the deter-
mination of thejth phase variables, that

. ‘ i 2
B{? = [B{V]? [47] BI* = KEl{exr{—ZhKH * [53]

k=1

. -1
A@ = p[ I S X" Ffd] [45] whose values are to be chosen appropriately (see below). F
2 1
andG®@ is a vector of dimension, with elements

Gy = LCj. [46]

[52]

k=1
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rather Ehan by Egs. [38] and [44]. Since the element8&f 905, 90p, 90
and/orB® were found to be zero, the elemerits must be  *c
90, 180,
. H 0y H 04 o

chosen so that

i p[ u } 0 [54]
exp ——5 N =0,
k=1 2 Giradient 5 ,T‘
-1
if the zero result [48] was encountered, and j
. 2 -1 y ‘ﬁ“ !
i
> {eXp[—ZhK]} =0, [55]
k=1 FIG. 1. Pulse sequence and coherence transfer pathways for GHMB!

The solid trajectory is the selected pathway, and the dotted ones are to
blocked by the phase cycle. Pathways which are blocked by the pulsed fie

if the zero result [49] was encountered. The phase cycle @xadients are not shown.
pansion therefore accounts for the zero values of the elements
in B® and/orB®, and, conversely, phase cycle expansion is

required if the solutions to Egs. [37] and [43] are the Zerl%ngth,L, of the phase cycle and the elemefits of the key

results [48] and/or [49]. phases from which the phases of the pulses and receiver

The determination of the elemerf anq expansion of the o0 mjineq (see Egs. [28] and [30]). The process is illustrate
length of the phase cycle from the solutions to Egs. [37] A% detailed consideration of some representative pulse ¢

[43] is effected using the algorithm: quences in the next section.

The above algorithm allows one to determine the minimur

e If the values ofB™ are in the set£1, +i), and if a set
of simultaneous Egs. [43] was involved in the determination of APPLICATIONS
thejth phase variables, Eq. [47] is true for Bllno expansion

of the phase cycle is required, and one(l)slmply chooses thg this section, the algorithm developed above is applied |
values ofFj consistent with the values & (Eq. [38]).  {he determination of phase cycles for some representative pu
* If one obtains zero values for all elementsif andB®, g0 ences. In each case, it is assumed that the pathway
the length of the phase cycle must be increased kd4L.  ,haqe matrices are in canonical form so that only “primed
The known phases are expanded using Eq. [50], andiiew  auices need be considered. In all examples, the pathw
of F’ is given by Eq. [51] withh, = (0 1 2 3), since these iy p is constructed by including all pathways which begir
elements satisfy both Egs. [54] and [55]. S in the zero coherence level and end in coherence levebf
»_If one obtains zero values for all elementsBS, but not e getected spin. Every pulse is viewed as imperfect, so th
for B?, the length of the phase cycleisincreased fiot 4L, 4 pathways which are opened up by imperfect pulses a
the known key phases are revised using [50], andth&ey ihciyded. The elements of the collection vec®t are the
phase variables are given by Eq. [S1] whh = (0 2 1 3).  phaqe factor(s) of the desired signal(s) and are zero for :
Since the sets of elemertts = (0 2), h, = (1 3), andh. = p5cked pathways (see Egs. [16] and [25]). Arragsand Q’
(0 2 1 3) allsatisfy [54], it is uncertain whether a twofold Olare determined fror®’ using the algorithm given in Table 1,

a fourfold increase in the phase cycle is necessary here. Thigl§y ihe elements of th¥ matrix are determined from the
noted by setting &alfcycle flagfor this phase cycle expansiong|ements ofQ’ using Eq. [36].

step to indicate that the potential validity of a phase cycle
obtained by taking only half of the elements in this expansion
should be tested once the final phase cycle has been obtained. GHMBC

e If one encounters zero values for all element86t, but
not for BY, the length of the phase cycle is increased fioto The gradient enhanced heteronuclear correlation (GHMBC
4L, the known key phases are revised using [50], andrthe of *H nuclei which are not directly bonded téC (7) can be
are given by Eqg. [51] witth, = (0 1 2 3). Since the sets of achieved using the modified HMQC pulse sequeeiiown
elementsh, = (0 1), h, = (2 3), andh, = (0 1 2 3) all in Fig. 1 and conventionally uses an eight-step phase cyc
satisfy [55], it is again uncertain whether a twofold or dhere are 27 possible coherence transfer pathways f
fourfold increase in the phase cycle is necessary. Therefore GiMBC, but 21 of them are assumed to be blocked by caref
halfcycle flag for this expansion is set. selection of the pulsed field gradient amplitudes and duratior
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The arrays involved in determining the phase cycle fdrhe halfcycle flag is set because a twofold expansion of tt
GHMBC to select one pathway and block five others are phase cycle is sufficient to satisfy Eq. [57].
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[56]

Rows 3, 6, and 7 oK andC’ give the equation
1 1 11 0
1 -1 —i i|B®@=|{0 [59]
1 -1 =i i 0
and row 5 gives the equation
(1-1 i-i)B®@=(0). [60]

The mutually compatible solutions to Eqgs. [59] and [60] are

—i -1
Bo—| '] and Be=| T [61]
1 -1 - 1/
1 1
Hence the known rows d¥’ have values
0 0O
F"=(0 2 1 3|, [62]
3120

All key phases have been determined, so the phases of
pulses may now be determined using Egs. [29] and [30]. Tt
results, including phases of the receiver and pulses 4 and 5,

, [63]

QOO WNW
OQONWNEPE
OO FrLrEFL,NO

O WEFR NN

with consecutive rows corresponding to the phases of pulses
2, and 3, the receiver phase, and the phases of pulses 4 an
The phase&’ computed from thig’ using Eq. [26] satisfy the

requirements in Eq. [27] and the pulse/receiver phases in E

There are four linearly independent phases: the receiver phl&# represent a valid phase cycle for the GHMBC sequenc
and three key phases. One begins witk= 1 andF’, = 0,

sinceC’} = 1. Row 2 of theX and C' matrices gives the

relationship

This equation has solution [48], so the length of the phase cycle

(1)-B¥=0.

[57]

is increased td. = 4 and the two known rows df’ are

-

0 00O
0 2 1 3

(58]

The half cycle

[64]

=

|
OO O WNW
OO NWNEE

does not give a set of phaseéswhich satisfies Eq. [27], and it
is concluded that the four-step cycle [63] is the phase cycle
minimum length which selects the required pathway and su
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FIG. 2. Pulse sequence and coherence transfer pathways for DQFCOSY.
The solid trajectories are the selected pathways, and the dotted ones are to be

blocked by the phase cycle.

presses signals associated with other pathways, including th
accessed when the pulses are imperfect.

DQFCOSY

The double quantum filtered COSY pulse sequeBgsiown
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QI

cNoNoNoNoNeNoNolN i i N
cNoNoloNoNoNol NeololNelNe]
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Cooo0O0O0ORrROOO

NWORFRPNWNWOORFRPRO NFPOWNEFENFRPORFRLOLPR
NNNNRPPOOORFRPROO NNNNWWOOOWWOo

in Fig. 2 contains three 90° pulses. The selected and blocked

pathways are also shown in Fig. 2. The canonical forms of t
phase, pathway, collect, and transformation matrices are

331 1
3221
0301
000 1
fio frp - fy 3001
Dt o f| |31 31
F=lf, f, - f.]'P =0 0 3 1|
fro frp - - fuy 012 1
1201
1331
1021
11 1
1 100
0 0100
0 0010
0 000 1
0 0000
lol ., |loooo
C'=lo['V'=]0 0 0 o
0 0000
0 0000
0 0000
0 0000
0 000

t&?though signals from two pathways are selectively accumt
lated as shown in Fig. 2, the collection arr@y contains only
one nonzero element because the two selected pathways
equivalent in modulo 4. There are four nonzero row¥inso
there are four linearly independent phases: the receiver pha
which is given by Eg. [31], and three key phases whos
elements are to be determined. There are no phases wh
elements can be arbitrarily set to zero.

We begin the solution process with= 1 andF’; = 0,
sinceC’ = 1. To determine the second row Bf, we recog
nize that rows 2, 5, and 6 ok have nonzero elements in
column 2 and zero elements in columns 3 and 4. Both rows
and 5 ofX andC’ give

1-BY =0, [66]

and row 6 gives

1-B? =0. [67]

These two equations give the zero results [48] and [49]. Th
implies that the length of the phase cycle must be expanded
L = 4, with the known rows of the phase matrix given by
<0 00
Fr=

0
01 2 Q- [68]
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The third row ofF’ is determined by considering the sets of

simultaneous equations

1 1 1 1 0
1 —i -1 i|gv=|o0 [69]
1 -1 1 -1 0
and
1 i -1 —i 0
1 1 1 1|- 0
(2 _
1 - -1 i 0l [70]
1 -1 1 -1 0

OLLERENSHAW AND MCCLUNG
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which are obtained from Eq. [35] using rows 3, 7, and 8 andFIG. 3. Pulse sequence and coherence transfer pathways for INEPT. T
rows 9-12 ofX and C’, respectively. The solutions to Eqssolid trajectories are the selected pathways, and the dotted ones are to

[69] and [70] are

B® = [71]

[eNeoNeoNe]

blocked by the phase cycle.

does not give a set of phaséswhich satisfies Eq. [27], hence
the 16-step cycle [72] is the phase cycle of minimum lengt
which will select the appropriate pathways and suppress si
nals which follow all other pathways including those opene
up by imperfections in the first pulse. It should be noted the

The zero result foB® implies that phase cycle expansion tahe second row of in [72], which corresponds to the phase of
L = 16 with the three known rows of the phase matrix givethe second pulse in the sequence, is unusual in that it conta

by

= O O

0
0
2

w o o

0
1
0

R RO

0
1
2

w Pk o
o N O

0 00000O0OY
F'=(0 222333
0 123012

is required. The halfcycle flag is set for this expansion becau%

a twofold expansion may be sufficient.

All key phases have been determined, so the phases of
pulses may now be determined using Egs. [29] and [30]. T
results, including the receiver phase, are

N

[72]

[eNeNeNe]
NFPEFEDN
P WweE
WO oOw
OpFr O
NN P W
RPOWN
wWwpEFk OO
ONODN
N WEF O
PP 0Ww
wWN O
O WOoOw
NOPRPE
PN WO

3

phases 0, 1, and 3 but not phase 2.

INEPT

The INEPT (insensitive nuclei enhanced by polarizatiot
transfer) pulse sequenc&0j shown in Fig. 3 contains three
roton pulses and two carbon pulses. Signals which traverse
Fthe 27 possible coherence transfer pathways are selectivi
?ﬁcumulated and the signals from all other pathways a

e - .
ft])locked as shown in Fig. 3. Since there are so many mo

e . . . .
pathways than in the two previous examples, the dimensions
the pathway, phase, collection, and transformation matrices &
much larger so they are not given here. Application of th
reduction algorithm in Table 1 to the pathway matfixshows
that there are five linearly independent phases: the receiv
phase (see Eq. [31]) and four key phases. The solution proce
follows the methodology used in earlier examples, and, in th
interest of brevity, only a brief sketch highlighting the impor-

with consecutive rows corresponding to the phases of pulsesaht results are given here. One begins Witk 1 andF, =

2, 3, and the receiver. The phade'scomputed from thid’

0 sinceC’ = 1 and proceeds with phase cycle expansions i

using Eq. [26] satisfy the requirements in Eq. [27] and th¢ie determination of the elements of rows 2 and Fofwith
phases in [72] are a valid phase cycle for the DQFCOS¥e halfcycle flag set in the first expansion, but not the secon

sequence. The halfcycle

[73]
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The four key rows o' are

o

F’ [74]
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and the pulses/receiver array alies in the resultant carbon signals. These extraneous pa
ways are blocked with the 8-step phase cycle [76].
1313313113133131\1
012323011230301 CONCLUSION
330033000011001 . . . .
fr= 310213201320310 [75] In this article, an algorithm for the construction of phase

021302130213021 cycles of minimum length has been developed. The applicatic
0000000000000O00O0J/0 of this algorithm to three representative and well-known puls

sequences has shown that the procedure generates valid pf

represents a valid 16-step phase cycle for INEPT. In [75], tﬁgcles, some of which have shorter lengths than those used
ionventlonal pulse programs. Furthermore, the phase cyc
c

consecutive rows df correspond to the phases of pulses 1,
. . for_the INEPT sequence constructed here block pathwa
3,and 5, th hase, and the ph f pulse 4 (wh . :
an e receiver phase, and the phase of pulse 4 (whi wlﬁch the longer phase cycles do not. A Windows 98 platforr

arbitrarily set to zero). ﬁomputer implementation of the phase cycle generation alg
The halfeycle flag was set for the first phase cycle expanfhm in C is available 11) so that robust phase cycles of

sion, and the 8-step pulse/receiver phase matrix - . .
PP P minimum length can be produced with minimal effort.
We have restricted our attention here to pulse sequenc

(1) i ; g 3 é g whic_h use onl_y modulo 4_ cycling of the phases of pulses ar
3300 3 3 0 receiver. In prm_mple, the |Qeas presented_here can be exte_nc
fr = 3102 1 3 2 [76] tq pt_her modu_ll, an_d multiple quantum filters which require
021302 1 dividing the circle |r_1to more t_hgn four elements_ could _be
000000 O handled. However, since the minimum phase cycling require

for multiple quantum filters is well-known, such extensions ar

composed of the first eight columns ©fin Eq. [75] gives not being pursued.

a phase arrayr’ which satisfies the requirements of [27]. REFERENCES
Therefore the 8-step cycle in [76] represents a phase cycle

- 1. G. Bodenhausen, H. Kogler, and R. R. Ernst, J. Magn. Reson. 58,
of minimum length for the INEPT sequence. It should be™ 5, (1984) g g

noted that the CyC”ng of phase of pU|se 3 in the 8- an(%. A. Jerschow and N. Muller, J. Magn. Reson. 134, 17 (1998).
16-step cycles is rather unconventional since it does Nat ¢ ¢ p wcciung, Concepts Magn. Reson. 11, 1 (1998).
involve phase 2. Only phases 0 and 3 are used for this pulge K. H. Rosen, “Elementary Number Theory and Its Applications,”
in [76] and only phases 0, 1, and 3 in [75]. 2nd ed., Chap. 3, Addison-Wesley, Reading, MA (1988).
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actually accumulates signals from four pathways—the twé. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling,
pathwaysI. 201 3) and (3 203 3s)elected here, and two “Numerical Recipes (FORTRAN),” p. 24 ff, Cambridge Univ. Press,
extraneous pathwayd 0 0 3 3) and (3 0 0 1 3). Theafian Cambridge (1989) _
Unity series pulse programnept . c (VNMR 6.1 version), 7. P. L. Rinaldi and P. A. Keifer, J. Magn. Reson. A 108, 259 (1994).

: 8. A. L. Davis, J. Keeler, E. D. Laue, and D. Moskau, J. Magn. Reson.
with focus = ‘n’ andnormal = ‘n’, uses an unusual = g 20?\("13992) eeter aue, an oskau, J. Magn. keson

4—SLep phasﬁ (;yCIe’ bbUt ItlaCCEmUIaLeS Slgnals frorrgj Slé(. A. J. Shaka and R. Freeman, J. Magn. Reson. 51, 169 (1983).
pathways—the four above plus the pathway8(0 0 3) and 15 A morris and R. Freeman, J. Am. Chem. Soc. 101, 760 (1979).

(300 1 3). Theundesired pathways in these implementay; ; oyerenshaw and R. E. . McClung, MakeCycle (1999). A copy of
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