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An algorithm for the generation of a phase cycle of minimum
length for a pulse sequence is developed from the basic require-
ment that only specified coherence transfer pathways will be
accumulated. The efficacy of the algorithm is shown by determin-
ing the phase cycles of minimum length for DQFCOSY, GHMBC,
and INEPT pulse sequences. © 2000 Academic Press

Key Words: pulse sequence; phase cycle; DQFCOSY; INEPT;
GHMBC.

INTRODUCTION

The creation of a new pulse sequence to obtain info
tion about one particular process and/or one type of mo
ular fragment always involves the invention of a prog
for the cycling of the phases of the pulses and receiv
phase cycle) in order to achieve the desired selectivit
their ground-breaking paper on coherence transfer path
and phase-cycling, Bodenhausenet al. (1) described th
evolution of the spin system during the pulse sequence
the initial longitudinal magnetization of one of the nuc
present until transverse magnetization is detected as
along a coherence transfer pathway. If coherences w
follow a particular coherence transfer pathwaym experienc
a change,Dpmn, in coherence level when thenth pulse in the

ulse sequence is applied, their signals acquire a p
actor exp(2iDpmnf nl), wheref nl is the phase of the pul

in the l th step in the phase cycle. For a pulse sequence w
as N pulses,M possible pathways, and a phase cycle

length L, the phase factor,! ml, for signals from themth
pathway in thel th step in the cycle, including the receiv

hase factor exp(2if Rl), is

!ml 5 exp~2i O
n51

N

Dpmnfnl 2 ifRl!. [1]

1 Supported by the Natural Sciences and Engineering Research Cou
anada.
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he phases {f nl, fRl} l51 must be chosen so that

O
l51

L

!ml 5 HLCm if m is a selected pathway,
0 otherwise, [2]

whereCm is a complex constant (usually 1) which reflects
phase of the signal acquired for selected pathwaym. Boden-
hausenet al. (1) showed that if the phasef nl of the nth pulse
is cycled independently of other pulses through values

fnl 5
2p~l 2 1!

Ln
[3]

or l 5 1, . . . , Ln, with corresponding receiver phases

fRl 5 2Kfnl, [4]

only pathways for which the coherence level changes ca
by thenth pulse are

Dpmn 5 K 6 kLn, [5]

wherek 5 0, 1, . . . , are selected. These ideas imply that
can construct a phase cycle which selectively acquires si
which have traversed a particular coherence transfer pat
defined by the coherence level changesDp1, Dp2, . . . , DpN

by superimposing independent cycles of each of the p
with suitable receiver phase. However, in many pulse
quences, the phases of some pulses are held fixed throu
and/or the phases of other pulses are cycled in concert. C
the creation of an effective phase cycle still remains a ra
intuitive endeavor and the length of a phase cycle ra
empirical.

A properly constructed phase cycle must effectively
press signals which arise from coherences which follow u
sired pathways, while accumulating signals from the sele
pathway(s). Pulse imperfections open up large numbe
coherence transfer pathways which are not accessible
perfect pulses, and signals arising from all such pathways
be suppressed by the phase cycle. The first pulse in any
l of
1090-7807/00 $35.00
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256 OLLERENSHAW AND MCCLUNG
sequence is expected to convert longitudinal magnetiz
(coherence level 0) into transverse magnetization (cohe
levels 61). If this pulse is a perfect 90° pulse, all of
ero-level coherence is converted into coherences in th61

evels; but if the pulse is an imperfect 90° pulse (or intent
lly has a flip angle different from 90°), some zero cohere
emains after the pulse. Any 90° pulse applied later in
equence, whether perfect or imperfect, can convert coher
n any level into coherences in levels2n, 2(n 2 1), 2(n 2
), . . . , n 2 1, n, wheren is the number of spin-1

2 nuclei to
hich the pulse is applied, i.e., all values ofDp are possible fo
0° pulses. When a perfect 180° pulse is applied to one ty
ucleus in the spin system, the pulse converts coherenc

evel p (for that nucleus) to coherences in level2p, but when
he 180° pulse is imperfect, all values ofDp are possible
herefore, imperfections in the first 90° pulse and in all 1
ulses provide a large number of pathways whereby spu
ignals can reach the detector. The phase cycle must
hese pathways as well as the undesired ones which are
ible even with perfect pulses.
Two recent articles (2, 3) describe methods for determini

he coherence transfer pathways which are selected w
articular pulse program is executed with a given phase c
he first article (2) uses simulation to identify the selec

pathways. In the second article (3), the coherence level chang
{ Dpmn} n51

N for the selected pathwaysm are determined direct
rom the values of the phases in the phase cycle. It was s
3) that theDpmn must satisfy the set of congruences

O
n51

N

Dpmnfnl 1 fRl ; #m ~mod 2p!, l 5 1, 2, . . . ,L,

[6]

here #m is the phase of the acquired signal from sele
pathwaym. The values of theDpmn can be determined b
solving this set of congruences (4). In this article, we use th
fundamental congruences [6] to derive a set of condi
which the phases {f nl, fRl} l51

L must satisfy forall possible
coherence transfer pathways defined by the coefficientsDpmn

and use this as the basis for construction of an algorith
determine the set of phases which constitutes a phase cy
minimum length.

THEORY

For a pulse sequence withN pulses,M pathways, and
hase cycle of lengthL, the phase of the signalFml from the

mth pathway in thel th step in the cycle will be

Fml ; O
n51

N

Dpmnfnl 1 fRl ~mod 2p!, [7]
on
ce
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e
e
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of
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wheref nl is the phase of thenth pulse in the sequence,fRl is
the phase of the receiver, andDpmn is the coherence lev
change caused by thenth pulse to signals traversing themth

athway. For a “selected” pathway, the phase of the s
ust be the same for each of theL steps in the phase cycle

hat the signals add constructively. For any “blocked” pathw
he phases of the acquired signals must vary during the
ycle in such a way that they interfere destructively and
um of the signals, over the complete phase cycle, is ze
his article, we will restrict our attention to phase cycles wh
se modulo 4 arithmetic and define the modular phase
blesF and f, which correspond toF andf, by

Fml 5 S 2

pDFml,

fnl 5 S 2

pDfnl,

fRl 5 S 2

pDfRl, [8]

so that the modulo 4 equivalent of Eq. [7] is

Fml ; O
n51

N

Dpmn fnl 1 fRl ~mod 4!. [9]

The accumulated signal for themth pathway will therefore b
proportional to

O
l51

L

expF2
ip

2
FmlG 5 LCm, [10]

whereCm will be zero if m is a blocked pathway, andCm will
be nonzero ifm is a selected pathway. Note thatCm in Eqs. [2]
and [10] is a complex constant belonging to the set (61, 6i ,
0), while#m in Eq. [6] is a phase angle which, in principle, c
have any value in the range (0, 2p). Most oftenCm will be

qual to 1 for selected pathways, but if signals from more
ne path are selected,Cm may depend on the specific pathw

Any phase program {{f nl} n51
N , fRl} l51

L which satisfies theM
onditions given in Eq. [10] is a suitable phase cycle for
ulse sequence. It is useful to require that the phase cycl
atisfy the requirement that the accumulated signals be fr
he detector offset voltage. This additional requirement is
f

O
l51

L

expF2
ip

2
fRlG 5 0, [11]
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257MAKECYCLE: MINIMUM CYCLE LENGTH PHASE CYCLES
which is equivalent to including, as a blocked pathway, on
which all of theDp’s are zero.

In order to facilitate a concise mathematical descriptio
the problem, it is necessary to express Eq. [9] in matrix fo
The phasesF 1l , F 2l , . . . , FMl , FM11l , whereFM11l 5 fRl, are
arranged into anM 1 1 3 L phase matrix,

F 5 1
F11 F12 · · · F1L

F21 F22 · · · F2L·
·
·

·
·
·

···
·
·
·

FM1 FM2 · · · FML

FM11 1 FM11 2 · · · FM11 L

2 , [12]

so that Eq. [9] can be written as

F ; P z f ~mod 4!, [13]

here the pathway matrix,P, is defined by

P 5 1
Dp11 Dp12 · · · Dp1N 1
Dp21 Dp22 · · · Dp2N 1

·
·
·

·
·
·

···
·
·
·

·
·
·

DpM1 DpM2 · · · DpMN 1
0 0 · · · 0 1

2 [14]

and the pulse/receiver phase array,f, by

f 5 1
f11 f12 · · · f1L

f21 f22 · · · f2L·
·
·

·
·
·

···
·
·
·

fN1 fN2 · · · fNL

fR1 fR2 · · · fRL

2 . [15]

By choosing CM11 5 0, we see that requirement [11]
equivalent to the requirement that the elements in the (M 1

)th row of F satisfy Eq. [10]. The order of the rows a
olumns inP is arbitrary, but it is expedient to arrange the ro
o that the selected pathways form the firstS rows ofP, and the
astM 1 1 2 S rows correspond to pathways which are to
blocked by the phase cycle. A collection vector,C, defined by

C 5 1
C1

C2·
·
·

CS

0
0
·
·
·
0

2 , [16]

is constructed from the elementsCm and has dimensio
M 1 1.

It must be emphasized that each row in theP matrix corre
in

f
.

s

e

ponds to one of the pathways which begins with longitud
agnetization in the 0 coherence level and ends with t

erse magnetization of the appropriate spin in the21 coher
nce level. MatrixP may include all possible pathways (s
QFCOSY and INEPT examples below) or only those p
ays not blocked by a judicious selection of pulsed fi
radients (see GHMBC example). It could also be tailore
ontain only pathways which are accessed when a spe
umber of pulses or fewer are imperfect.
The arrangement of rows (and columns) of the arraysF, f, P,

nd C is arbitrary. In the following analysis, the rows a
olumns of these arrays are reordered in order to obtain
ormed arrays which have simple canonical forms. Thes
rranged matrices will be denoted with primes and wil
eferred to as the canonical forms of the matrices.

We now seek to determine the minimum number of in
endent phases (referred to askeyphases below) which mu
e determined in order to obtain a satisfactory phase c
his process involves the determination of a linear tran
ation which transforms the matrixP into a matrix,V*, whose

rst K rows and columns form aK 3 K unit matrix, where
# N 1 1, and the lowerM 1 1 2 K rows are zero:

V * 5 1
1 0 · · · 0 V91 K11 V91 K12 · · · V91 N11

0 1 · · · 0 V92 K11 V92 K12 · · · V92 N11·
·
·

·
·
·

···
·
·
·

·
·
·

·
·
·

···
·
·
·

0 0 · · · 1 V9K K11 V9K K12 · · · V9K N11

0 0 · · · 0 0 0 · · · 0
0 0 · · · 0 0 0 · · · 0
·
·
·

·
·
·

···
·
·
·

·
·
·

·
·
·

···
·
·
·

0 0 · · · 0 0 0 · · · 0

2 .

[17]

his transformation is determined using the algorithm give
able 1 and is essentially the Gauss–Jordan elimination
ess (5, 6) with row and column interchange. The requi

inear transformation is described by two matrices: anM 1
3 M 1 1 matrix Q which contains the required line

combinations and interchanges of the rows ofP which pro-
duces aK 3 K unit matrix in the upper right block ofV* and
makes all elements in rowsK 1 1, K 1 2, . . . ,M 1 1 of V*
zero; and anN 1 1 3 N 1 1 matrix T which defines th
required column interchanges in the columns ofQ z P so tha
the matrixV* defined by

V * ; Q z P z T ~mod 4! [18]

is of the form given in Eq. [17]. The numberK of nonzero row
in V* is related to the number of key phase variables w
cycles must be determined as shown below.

The application of a column ordering transformationS to
matrix Q gives



-

Q
K nt
r ine

a

er

h
nner

f the

a

n

ay
g
rre-

the
.

s

s
s

s
s

atio

giv

258 OLLERENSHAW AND MCCLUNG
Q* 5 Q z S, [19]

where theQ* matrix is anM 1 1 3 M 1 1 linear transfor
mation matrix of the form

Q* 5 1
Q911 Q912 · · · Q91 K21 Q91 K 0 0 · · · 0
Q921 Q922 · · · Q92 K21 Q92 K 0 0 · · · 0

·
·
·

·
·
·

···
·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

Q9K21 1 Q9K21 2 · · · Q9K21 K21 Q9K21 K 0 0 · · · 0
0 0 · · · 0 1 0 0 · · · 0

Q9K11 1 Q9K11 2 · · · Q9K11 K21 0 1 0 · · · 0
Q9K12 1 Q9K12 2 · · · Q9K12 K21 0 0 1 · · · 0

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

·
·
·

···
·
·
·

Q9M11 1 Q9M11 2 · · · Q9M11 K21 0 0 0 · · · 1

2 .

[20]

All elements in the upper rightK 3 (M 1 1 2 K) portion of
* are zero. The elements of the lower left (M 1 1 2 K) 3
portion of Q* will be shown below to define importa

elationships from which the phase cycle can be determ

TABLE 1
Algorithm for Construction of Q*, Q, V*, S, and T Matrices

and Determination of K

setV (0) 5 P, Q 5 1.
et q 5 0.

fora n 5 1, N 1 1 2 q
while (columnn 1 q of V (n21) contains no elementVr n1q

(n21) with absolute
value 1 forr $ n) b

increment q
end while
if (uVn n1q

(n21)u Þ 1)b

setR(n) to permute rown with a row n9 for which uVn9 n1q
(n21) u 5 1

else
set R(n) 5 1
set n9 5 n

end if

set Vn9r
~n21! ; Vn9r

~n21! 3 Vn9n1q
~n21! ~mod4!

for r 5 n 1 q, n 1 q 1 1, . . . , N 1 1
initialize Q(n) 5 1

setQrn
(n)[H2~R ~n! z V ~n21!!n n1q 3 ~R ~n! z V ~n21!! r n1q~mod 4! for r Þ n

~R ~n! z V ~n21!!n n1q~mod 4! for r 5 n

set V (n) [ Q(n) z R(n) z V (n21)(mod 4)
replaceQ by Q(n) z R(n) z Q(mod 4)

end for n
setS to permute columns ofQ to block form in Eq. [20]
etQ* 5 Q z S
etV 5 V (N112q)

setT to permute columns ofV to block form in Eq. [17]
etV* 5 V z T
et K 5 N 1 1 2 q

a In for loops, the upper bound is recalculated at the end of each iter
b u3u [ 1 (mod 4). If all possible pathways are included inP, this reduction

algorithm which restricts pivot elements to those with magnitude 1 will
the required reduction.
d,

nd the elements of the lower right (M 1 1 2 K) 3 (M 1
1 2 K) portion ofQ* form a unit matrix. The upper leftK 3
K portion of Q* is a matrix which is the inverse of the upp
left K 3 K portion of the matrixP* defined by

P* 5 S† z P z T , [21]

whereS† is the transpose ofS. P* is a pathway matrix in whic
the rows and columns are ordered in a more optimum ma
than inP. Congruence [18] can be rewritten as

V * ; Q* z P* ~mod 4!. [22]

It is convenient to define reordered or canonical forms o
pathway array

F* 5 S† z F, [23]

pulse/receiver phase array

f * 5 T † z f , [24]

nd collection array

C* 5 S† z C, [25]

whereT † is the transpose ofT, so that Eqs. [13] and [10] ca
be written as

F* ; P* z f * ~mod 4! [26]

and

O
l51

L

expF2
ip

2
F9mlG 5 LC9m. [27]

It should be noted that theSmatrix is constructed in such a w
that any of the firstK rows ofF* for which the correspondin
elements ofC* are nonzero precede rows for which the co
sponding elements ofC* are zero.

From Eqs. [22] and [26],

V * z f * ; C ~mod 4!, [28]

where the phase arrayC is defined by

C ; Q* z F* ~mod 4!. [29]

If the elements ofC were known, one could determine
elements of the pulse and receiver phase arrayf* by solving Eq
[28]. Examination of the form of matrixV* (Eq. [17]) shows

n.

e
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that only the firstK rows are nonzero and that the determin
tal rank of matrixV* is K. This implies that there areN 1 1 2
K degrees of freedom in the determination of theN 1 1 rows

f f*: only K of these rows are linearly independent, and
emainingN 1 1 2 K rows may be assigned arbitrarily (5). It

is convenient to choose the lowerN 1 1 2 K rows of f* as the
arbitrary rows and set them to zero so that

f9jl 5 HC jl for 1 # j # K,
0 for K 1 1 # j # N 1 1. [30]

Since the lowerN 1 1 2 K rows of V* are zero, th
corresponding rows ofC are also zero. Equation [30] impli
that the determination of the firstK rows ofC is equivalent to
the determination of the linearly independent rows off*.

The Kth row of f* (andC) contains the receiver phases
each step of the phase cycle. The values must be chos
satisfy Eq. [11], and they can be chosen to be

f9Kl 5 CKl 5 ~0 2 1 3 0 2 1 3. . .0 2 1 3! [31]

independent of the values of all other phases.
In order to determine the phasesCal , we recognize thatCal

is identically zero fora . K (see Eqs. [17] and [28]) and th
theath row of Q*, for a . K, contains nonzero elements o
in columnsm 5 1, 2, . . . ,K 2 1 andm 5 a (Eq. [20]). From
the definition ofC, Eq. [29],

O
m51

K21

Q9am z F9ml 1 F9al ; 0 ~mod 4! [32]

for K 1 1 # a # M 1 1. Hence,

F9al ; 2 O
m51

K21

Q9am z F9ml ~mod 4!, [33]

and, from Eq. [27],

O
l51

L

expF ip

2 O
m51

K21

Q9am z F9mlG 5 LC9a. [34]

The phasesF91l , F92l , . . . , F9K21l are henceforth referred to
key phases since all phasesF9al , for a . K, are just linea
combinations of these key phases (see Eq. [33]).

Equation [34] defines the fundamental relationships w
theK 2 1 key phases must satisfy. It is important to recog
that the indexa in Eq. [34] takes on valuesK 1 1, K 1

, . . . ,M 1 1, and that the additional requirements which
ey phases must satisfy are given in Eq. [27]. These two
f requirements can be included in a single equation,
-

e

to

h
e

e
ts

O
l51

L

expF2
ip

2 O
m51

K21

Xam z F9mlG 5 LC9a, [35]

where the (M 1 1) 3 K matrix X has elements

Xam ; Hdam for 0 # a # K,
2Q9am ~mod 4! for K 1 1 # a # M 1 1. [36]

he determination of the phase cycle for the pulse seque
herefore reduced to the determination of the elements o
ey phases which satisfy Eq. [35].
The determination of the elements of the key phasesF9ml is

not a trivial task. From the outset, the task seems impos
the lengthL of the phase cycle is not known since we se
phase cycle of minimum length; and it would appear that
must solve a myriad of transcendental Eqs. [35] in an unkn
number of variablesF9ml . However, an iterative process
determineL andF9ml has been devised and is presented be

In order to begin the solution process, it should be re
nized thatF91l is constant for alll because the first row of th
pathway matrixP* and the collection vectorC* corresponds t
one of the collected pathways. Therefore one begins withL 5
1 and chooses the value ofF911 consistent with the value ofC91.
It is easiest to describe the iterative key phase determin
process by considering the determination of thej th row of the
phase matrixF*. One assumes that phasesF91l , F92l , . . . , F9j21l

are known for 0# l # L, whereL is the length of the pha
ycle which has been obtained in the determination of
lementsF9j21l . (The process begins withj 5 2, givenL 5 1

andF911 consistent withC91.) To determine the phasesF9jl , one
selects from Eq. [35] those relations which involve only
known key phases 1, 2, . . . ,j 2 1 and phasej , i.e., those fo
which Xaj Þ 0 andXam 5 0 for j , m # K. If there aren1

rows of matrixX in which thej th element equals 1 or 3 and
which the (j 1 1)th and higher elements are zero, Eq.
yields a set ofn1 simultaneous equations

A ~1! z B¢ ~1! 5 G¢ ~1! [37]

in the unknown variablesBl
(1), whereB¢ (1) is a vector of dimen-

sion L with elements

Bl
~1! 5 HexpF2

ip

2
F9jlGJ 1

, [38]

A (1) is a matrix of dimensionn1 3 L with elements

Aal
~1! 5 expF2

ip

2 O
k51

j21

Xak z F9klG , [39]
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260 OLLERENSHAW AND MCCLUNG
andG¢ is a vector of dimensionn1 with elements

Ga
~1! 5 LC9a. [40]

The rows ofX in which Xaj 5 3 are included in Eq. [37
since the relation

O
l51

L

expF2
ip

2 O
k51

j21

Xak z F9klGHexpF2
ip

2
F9jlGJ 3

5 LC9a

[41]

implies the complex conjugate relation

O
l51

L

expF1
ip

2 O
k51

j21

Xak z F9klGHexpF2
ip

2
F9jlGJ 1

5 LC9*a,

[42]

because exp[2ip/ 2 F9jl ] can have only values61, 6i .
In cases where there aren2 rows of matrixX in which thej th

lement is 2 and in which the (j 1 1)th and higher elemen
are zero, Eq. [35] yields a set ofn2 simultaneous equations

A ~2! z B¢ ~2! 5 G¢ ~2! [43]

in the unknown variablesBl
(2), whereB¢ (2) is a vector of dimen-

sion L with elements

Bl
~2! 5 HexpF2

ip

2
F9jlGJ 2

, [44]

A (2) is a matrix of dimensionn2 3 L with elements

Abl
~2! 5 expF2

ip

2 O
k51

j21

Xbk z F9klG , [45]

andG¢ (2) is a vector of dimensionn2 with elements

Gb
~2! 5 LC9b. [46]

Equations [37] and [43] are usually underdetermined se
simultaneous equations in the variablesBl

(1) andBl
(2).

The development of Eqs. [37] and [43] assumes that the
ycle has lengthL and that all of the elements ofB¢ (1) obtained by

solving Eq. [37] will have values in the set (61,6i), that all of the
lements ofB¢ (2) obtained by solving Eq. [43] will have values61,
nd, if a set of simultaneous Eqs. [43] was present in the d
ination of thejth phase variables, that

Bl
~2! 5 @Bl

~1!# 2 [47]
of

se

er-

for all l. If these conditions are met, then the values of the p
variablesF9jl are determined from the values ofBl

(1) using Eq. [38]
and no expansion of the length of the phase cycle is requir

The most interesting and enigmatic part of the determin
of the phase variables comes about when the elementsB¢ (1)

obtained by solving Eq. [37] and/or the elements ofB¢ (2) ob-
tained by solving Eq. [43] do not have values which belon
the required sets, but instead

Bl
~1! 5 0 for 0 # l # L, [48]

and, possibly,

Bl
~2! 5 0 for 0 # l # L. [49]

Clearly a value of zero forBl
(1) or Bl

(2) is inconsistent with the
definitions (Eqs. [38] and [44]). These zero values can on
rationalized by expanding the length of the phase cycle toL.
(In some cases an expansion to 2L may be sufficient, so th
case is included in the algorithm presented below.) In the p
cycle expansion, each element in a “known” rowk of the F*
array, with 1 # k # j 2 1, is replaced by a block of fo
replicas of that element so that

~F9k1 F9k2 . . . F9kL!

s
~F9k1 F9k1 F9k1 F9k1 F9k2 F9k2 F9k2 F9k2 . . . F9kL F9kL F9kL F9kL!

,

[50]

nd thej th phase variable is taken to be a simple repetitio
he four elementsh1, h2, h3, andh4:

F9jl 5 ~h1 h2 h3 h4 h1 h2 h3 h4 . . . h1 h2 h3 h4!, [51]

hose values are to be chosen appropriately (see below
his expanded phase cycle, sets of simultaneous Eqs. [37
43] are still obtained from the relations in Eq. [35] for wh

aj Þ 0 andXam 5 0 for j , m # K, the vectorsB¢ (1) andB¢ (2)

are still of dimensionL, andA (1) andA (2) still have dimension
n1 3 L andn2 3 L with values defined by Eqs. [39] and [4
but the elements ofG¢ (1) andG¢ (2) are four times larger than
Eqs. [40] and [46], and the elements ofB¢ (1) andB¢ (2) are given by

Bl
~1! 5 O

k51

4

expF2
ip

2
hkG [52]

and

Bl
~2! 5 O

k51

4 HexpF2
ip

2
hkGJ 2

, [53]
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261MAKECYCLE: MINIMUM CYCLE LENGTH PHASE CYCLES
rather than by Eqs. [38] and [44]. Since the elements ofB¢
and/or B¢ (2) were found to be zero, the elementshk must be
chosen so that

O
k51

4

expF2
ip

2
hkG 5 0, [54]

if the zero result [48] was encountered, and

O
k51

4 HexpF2
ip

2
hkGJ 2

5 0, [55]

if the zero result [49] was encountered. The phase cycle
pansion therefore accounts for the zero values of the elem
in B¢ (1) and/orB¢ (2), and, conversely, phase cycle expansio
equired if the solutions to Eqs. [37] and [43] are the z
esults [48] and/or [49].

The determination of the elementsF9jl and expansion of th
length of the phase cycle from the solutions to Eqs. [37]
[43] is effected using the algorithm:

● If the values ofBl
(1) are in the set (61, 6i ), and if a se

f simultaneous Eqs. [43] was involved in the determinatio
he j th phase variables, Eq. [47] is true for alll , no expansio
f the phase cycle is required, and one simply choose
alues ofF9jl consistent with the values ofBl

(1) (Eq. [38]).
● If one obtains zero values for all elements ofB¢ (1) andB¢ (2),

he length of the phase cycle must be increased fromL to 4L.
he known phases are expanded using Eq. [50], and thej th row
f F* is given by Eq. [51] withhk 5 (0 1 2 3), since thes
lements satisfy both Eqs. [54] and [55].

● If one obtains zero values for all elements ofB¢ (1), but not
for B¢ (2), the length of the phase cycle is increased fromL to 4L,
the known key phases are revised using [50], and thej th key
phase variables are given by Eq. [51] withhk 5 (0 2 1 3).
Since the sets of elementshk 5 (0 2), hk 5 (1 3), andhk 5
0 2 1 3) allsatisfy [54], it is uncertain whether a twofold
fourfold increase in the phase cycle is necessary here. T
oted by setting ahalfcycle flagfor this phase cycle expansi
tep to indicate that the potential validity of a phase c
btained by taking only half of the elements in this expan
hould be tested once the final phase cycle has been obt

● If one encounters zero values for all elements ofB¢ (2), but
not forB¢ (1), the length of the phase cycle is increased fromL to
4L, the known key phases are revised using [50], and thF9jl
are given by Eq. [51] withhk 5 (0 1 2 3). Since the sets
elementshk 5 (0 1), hk 5 (2 3), andhk 5 (0 1 2 3) all
satisfy [55], it is again uncertain whether a twofold o
fourfold increase in the phase cycle is necessary. Therefo
halfcycle flag for this expansion is set.
x-
nts
is
o

d

f

he

is
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ed.

the

The above algorithm allows one to determine the minim
length,L, of the phase cycle and the elementsF9al of the key
phases from which the phases of the pulses and receiv
determined (see Eqs. [28] and [30]). The process is illust
by detailed consideration of some representative puls
quences in the next section.

APPLICATIONS

In this section, the algorithm developed above is applie
the determination of phase cycles for some representative
sequences. In each case, it is assumed that the pathwa
phase matrices are in canonical form so that only “prim
matrices need be considered. In all examples, the pat
matrixP* is constructed by including all pathways which be
in the zero coherence level and end in coherence level21 of
he detected spin. Every pulse is viewed as imperfect, so
ll pathways which are opened up by imperfect pulses

ncluded. The elements of the collection vectorC* are the
phase factor(s) of the desired signal(s) and are zero fo
blocked pathways (see Eqs. [16] and [25]). ArraysV* andQ*
are determined fromP* using the algorithm given in Table
and the elements of theX matrix are determined from th
elements ofQ* using Eq. [36].

GHMBC

The gradient enhanced heteronuclear correlation (GHM
of 1H nuclei which are not directly bonded to13C (7) can be
achieved using the modified HMQC pulse sequence (8) shown
in Fig. 1 and conventionally uses an eight-step phase c
There are 27 possible coherence transfer pathways
GHMBC, but 21 of them are assumed to be blocked by ca
selection of the pulsed field gradient amplitudes and durat

FIG. 1. Pulse sequence and coherence transfer pathways for GH
The solid trajectory is the selected pathway, and the dotted ones are
blocked by the phase cycle. Pathways which are blocked by the pulse
gradients are not shown.
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262 OLLERENSHAW AND MCCLUNG
The arrays involved in determining the phase cycle
GHMBC to select one pathway and block five others are

f * 5 1
f11 f12 · · · f1L

f21 f22 · · · f2L

f31 f32 · · · f3L

fR1 fR2 · · · fRL

f41 f42 · · · f4L

f51 f52 · · · f5L

2 ,

P* 5 1
1 0 3 1 2 1
0 3 2 1 3 3
0 0 1 1 3 3
0 0 0 1 0 0
0 1 0 1 3 3
1 3 0 1 2 1
1 1 2 1 2 1

2 , C* 5 1
1
0
0
0
0
0
0

2 ,

V * 5 1
1 0 0 0 1 0
0 1 0 0 3 3
0 0 1 0 3 3
0 0 0 1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

2 ,

Q* 5 1
1 0 1 2 0 0 0
0 3 2 3 0 0 0
0 0 1 3 0 0 0
0 0 0 1 0 0 0
0 1 2 0 1 0 0
3 3 1 0 0 1 0
3 1 3 0 0 0 1

2 ,

X 5 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 3 2 0
1 1 3 0
1 3 1 0

2 . [56]

here are four linearly independent phases: the receiver
nd three key phases. One begins withL 5 1 andF911 5 0,

since C91 5 1. Row 2 of theX and C* matrices gives th
relationship

~1! z B1
~1! 5 0. [57]

This equation has solution [48], so the length of the phase
is increased toL 5 4 and the two known rows ofF* are

F* 5 S0 0 0 0
0 2 1 3D . [58]
r

se

le

The halfcycle flag is set because a twofold expansion o
phase cycle is sufficient to satisfy Eq. [57].

Rows 3, 6, and 7 ofX andC* give the equation

S1 1 1 1
1 21 2i i
1 21 2i i

DB¢ ~1! 5 S0
0
0
D [59]

and row 5 gives the equation

~1 2 1 i 2 i !B¢ ~2! 5 ~0!. [60]

The mutually compatible solutions to Eqs. [59] and [60] a

B¢ ~1! 5 1
2i

i
21

1
2 and B¢ ~2! 5 1

21
21

1
1
2 . [61]

Hence the known rows ofF* have values

F* 5 S0 0 0 0
0 2 1 3
3 1 2 0

D . [62]

All key phases have been determined, so the phases
pulses may now be determined using Eqs. [29] and [30].
results, including phases of the receiver and pulses 4 and

f * 5 1
3 1 0 2
2 2 2 2
3 3 1 1
0 2 1 3
0 0 0 0
0 0 0 0

2 , [63]

with consecutive rows corresponding to the phases of puls
2, and 3, the receiver phase, and the phases of pulses 4
The phasesF* computed from thisf* using Eq. [26] satisfy th
equirements in Eq. [27] and the pulse/receiver phases i
63] represent a valid phase cycle for the GHMBC seque
he half cycle

f * 5 1
3 1
2 2
3 3
0 2
0 0
0 0

2 [64]

does not give a set of phasesF* which satisfies Eq. [27], and
is concluded that the four-step cycle [63] is the phase cyc
minimum length which selects the required pathway and
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263MAKECYCLE: MINIMUM CYCLE LENGTH PHASE CYCLES
presses signals associated with other pathways, including
accessed when the pulses are imperfect.

DQFCOSY

The double quantum filtered COSY pulse sequence (9) shown
n Fig. 2 contains three 90° pulses. The selected and blo
athways are also shown in Fig. 2. The canonical forms o
hase, pathway, collect, and transformation matrices are

f * 5 1
f11 f12 · · · f1L

f21 f22 · · · f2L

f31 f32 · · · f3L

fR1 fR2 · · · fRL

2 , P* 5 1
3 3 1 1
3 2 2 1
0 3 0 1
0 0 0 1
3 0 0 1
3 1 3 1
0 0 3 1
0 1 2 1
1 2 0 1
1 3 3 1
1 0 2 1
1 1 1 1

2 ,

C* 5 1
1
0
0
0
0
0
0
0
0
0
0
0

2 , V * 5 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

2 ,

FIG. 2. Pulse sequence and coherence transfer pathways for DQFC
he solid trajectories are the selected pathways, and the dotted ones a
locked by the phase cycle.
ose

ed
e

Q* 5 1
2 1 0 1 0 0 0 0 0 0 0 0
0 0 3 1 0 0 0 0 0 0 0 0
3 1 3 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0
2 1 0 0 1 0 0 0 0 0 0 0
1 2 0 0 0 1 0 0 0 0 0 0
3 1 3 0 0 0 1 0 0 0 0 0
2 2 3 0 0 0 0 1 0 0 0 0
2 3 2 0 0 0 0 0 1 0 0 0
1 0 2 0 0 0 0 0 0 1 0 0
0 1 2 0 0 0 0 0 0 0 1 0
3 2 2 0 0 0 0 0 0 0 0 1

2 ,

X 5 1
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
2 3 0 0
3 2 0 0
1 3 1 0
2 2 1 0
2 1 2 0
3 0 2 0
0 3 2 0
1 2 2 0

2 . [65]

Although signals from two pathways are selectively accu
lated as shown in Fig. 2, the collection arrayC* contains only
one nonzero element because the two selected pathwa
equivalent in modulo 4. There are four nonzero rows inV*, so
there are four linearly independent phases: the receiver p
which is given by Eq. [31], and three key phases wh
elements are to be determined. There are no phases
elements can be arbitrarily set to zero.

We begin the solution process withL 5 1 andF911 5 0,
sinceC91 5 1. To determine the second row ofF*, we recog-
nize that rows 2, 5, and 6 ofX have nonzero elements
column 2 and zero elements in columns 3 and 4. Both ro
and 5 ofX andC* give

1 z B1
~1! 5 0, [66]

and row 6 gives

1 z B1
~2! 5 0. [67]

These two equations give the zero results [48] and [49].
implies that the length of the phase cycle must be expand
L 5 4, with the known rows of the phase matrix given b

F* 5 S0 0 0 0
0 1 2 3D . [68]

Y.
o be
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264 OLLERENSHAW AND MCCLUNG
The third row ofF* is determined by considering the sets
simultaneous equations

S1 1 1 1
1 2i 21 i
1 21 1 21

DB¢ ~1! 5 S0
0
0
D [69]

and

1
1 i 21 2i
1 1 1 1
1 2i 21 i
1 21 1 21

2B¢ ~2! 5 1
0
0
0
0
2 , [70]

which are obtained from Eq. [35] using rows 3, 7, and 8
rows 9–12 ofX and C*, respectively. The solutions to Eq
[69] and [70] are

B¢ ~1! 5 1
1

2i
21

i
2 and B¢ ~2! 5 1

0
0
0
0
2 . [71]

The zero result forB¢ (2) implies that phase cycle expansion
5 16 with the three known rows of the phase matrix gi

y

F* 5 S0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

D ,

is required. The halfcycle flag is set for this expansion bec
a twofold expansion may be sufficient.

All key phases have been determined, so the phases
pulses may now be determined using Eqs. [29] and [30].
results, including the receiver phase, are

f * 5 1
0 2 1 3 1 3 2 0 2 0 3 1 3 1 0 2
0 1 3 0 0 1 3 0 0 1 3 0 0 1 3 0
0 1 3 0 1 2 0 1 2 3 1 2 3 0 2 3
0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3

2 , [72]

with consecutive rows corresponding to the phases of puls
2, 3, and the receiver. The phasesF* computed from thisf*
using Eq. [26] satisfy the requirements in Eq. [27] and
phases in [72] are a valid phase cycle for the DQFCO
sequence. The halfcycle

f * 5 1
0 2 1 3 2 0 3 1
0 1 0 1 0 1 0 1
0 1 1 2 2 3 3 0
0 2 0 2 0 2 0 2

2 [73]
f

d

n

se

the
e

1,

e
Y

does not give a set of phasesF* which satisfies Eq. [27], hen
the 16-step cycle [72] is the phase cycle of minimum le
which will select the appropriate pathways and suppress
nals which follow all other pathways including those ope
up by imperfections in the first pulse. It should be noted
the second row off* in [72], which corresponds to the phase
the second pulse in the sequence, is unusual in that it co
phases 0, 1, and 3 but not phase 2.

INEPT

The INEPT (insensitive nuclei enhanced by polariza
transfer) pulse sequence (10) shown in Fig. 3 contains thre
proton pulses and two carbon pulses. Signals which trave
of the 27 possible coherence transfer pathways are selec
accumulated and the signals from all other pathways
blocked as shown in Fig. 3. Since there are so many
pathways than in the two previous examples, the dimensio
the pathway, phase, collection, and transformation matrice
much larger so they are not given here. Application of
reduction algorithm in Table 1 to the pathway matrixP shows
that there are five linearly independent phases: the rec
phase (see Eq. [31]) and four key phases. The solution pr
follows the methodology used in earlier examples, and, in
interest of brevity, only a brief sketch highlighting the imp
tant results are given here. One begins withL 5 1 andF911 5
0 sinceC91 5 1 and proceeds with phase cycle expansion
the determination of the elements of rows 2 and 3 ofF*, with
the halfcycle flag set in the first expansion, but not the sec
The four key rows ofF* are

F* 5 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 2 2 2 2 1 1 1 1 3 3 3 3
0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3
1 2 3 0 3 0 1 2 3 0 1 2 1 2 3 0

2 , [74]

FIG. 3. Pulse sequence and coherence transfer pathways for INEP
solid trajectories are the selected pathways, and the dotted ones are
blocked by the phase cycle.
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265MAKECYCLE: MINIMUM CYCLE LENGTH PHASE CYCLES
and the pulses/receiver array

f * 5 1
1 3 1 3 3 1 3 1 1 3 1 3 3 1 3 1
0 1 2 3 2 3 0 1 1 2 3 0 3 0 1 2
3 3 0 0 3 3 0 0 0 0 1 1 0 0 1 1
3 1 0 2 1 3 2 0 1 3 2 0 3 1 0 2
0 2 1 3 0 2 1 3 0 2 1 3 0 2 1 3
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 [75]

represents a valid 16-step phase cycle for INEPT. In [75]
consecutive rows off* correspond to the phases of pulses 1
3, and 5, the receiver phase, and the phase of pulse 4 (wh
arbitrarily set to zero).

The halfcycle flag was set for the first phase cycle ex
sion, and the 8-step pulse/receiver phase matrix

f * 5 1
1 3 1 3 3 1 3 1
0 1 2 3 2 3 0 1
3 3 0 0 3 3 0 0
3 1 0 2 1 3 2 0
0 2 1 3 0 2 1 3
0 0 0 0 0 0 0 0

2 [76]

omposed of the first eight columns off* in Eq. [75] gives
phase arrayF* which satisfies the requirements of [2

herefore the 8-step cycle in [76] represents a phase
f minimum length for the INEPT sequence. It should
oted that the cycling of phase of pulse 3 in the 8-
6-step cycles is rather unconventional since it does

nvolve phase 2. Only phases 0 and 3 are used for this
n [76] and only phases 0, 1, and 3 in [75].

The Bruker AM pulse program INEPT.AU (DISR94
ease) uses a 16-step phase cycle, but the phase
ctually accumulates signals from four pathways—the
athways (1 2 0 1 3) and (3 2 0 3 3)selected here, and tw
xtraneous pathways (1 0 0 3 3) and (3 0 0 1 3). The Varian
nity series pulse programinept.c (VNMR 6.1 version)
ith focus 5 ‘n’ andnormal 5 ‘n’, uses an unusu
-step phase cycle, but it accumulates signals from
athways—the four above plus the pathways (1 3 0 0 3) and
3 0 0 1 3). Theundesired pathways in these impleme
ions of INEPT are traversed if the second pulse (a1H 180

pulse) is imperfect and may lead to observable phase a
e
,
is

n-

le
e
d
ot
lse

cle
o

ix

-

m-

alies in the resultant carbon signals. These extraneous
ways are blocked with the 8-step phase cycle [76].

CONCLUSION

In this article, an algorithm for the construction of ph
cycles of minimum length has been developed. The applic
of this algorithm to three representative and well-known p
sequences has shown that the procedure generates valid
cycles, some of which have shorter lengths than those us
conventional pulse programs. Furthermore, the phase c
for the INEPT sequence constructed here block path
which the longer phase cycles do not. A Windows 98 platf
computer implementation of the phase cycle generation
rithm in C is available (11) so that robust phase cycles
minimum length can be produced with minimal effort.

We have restricted our attention here to pulse seque
which use only modulo 4 cycling of the phases of pulses
receiver. In principle, the ideas presented here can be ext
to other moduli, and multiple quantum filters which requ
dividing the circle into more than four elements could
handled. However, since the minimum phase cycling req
for multiple quantum filters is well-known, such extensions
not being pursued.
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